首页> 外文OA文献 >Efficient Distributed Stream Processing: Optimization Approaches and Applications
【2h】

Efficient Distributed Stream Processing: Optimization Approaches and Applications

机译:高效的分布式流处理:优化方法和应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As more aspects of our daily lives are being computerized, ever larger amounts of data are being produced at ever greater speeds. In this data lies great value, and we need technologies that enable us to extract this value. This thesis is concerned with one type of technology that allows us to do this: Distributed Stream Processing Systems (DSPS) are systems consisting of many computers that jointly process, and hence extract value from, large amounts of data at high speeds.\ud\udThis dissertation consists of three research projects that investigate two aspects of DSPS: In two projects, different approaches to increase the efficiency of DSPS were studied and in one project, the value of increased efficiency in stream processing was evaluated. All of these projects have been conducted on real computer systems and they are all of quantitative nature. In the first study, a graph partitioning algorithm was leveraged to schedule the workload within a DSPS. This reduced the communication load between hosts, while maintaining or increasing the throughput of the system. The second study was concerned with the auto-configuration of DSPS. We used a probabilistic black-box optimization strategy called Bayesian Optimization to increase throughput performance of DSPSs through configuration. In the third study, we investigated the value of increased efficiency of a DSPS. This was done by building a DSPS based entity ranking system and by evaluating the effect of timely data processing on the quality of the generated rankings.
机译:随着我们日常生活中越来越多的方面被计算机化,越来越多的数据正以越来越快的速度产生。这些数据蕴含着巨大的价值,我们需要使我们能够提取这一价值的技术。本文涉及一种允许我们执行此操作的技术:分布式流处理系统(DSPS)是由许多计算机组成的系统,这些计算机共同处理大量数据,从而从中高速提取价值。\ ud \本文由三个研究项目组成,分别研究了DSPS的两个方面:在两个项目中,研究了提高DSPS效率的不同方法;在一个项目中,评估了提高流处理效率的价值。所有这些项目都是在真实的计算机系统上进行的,它们都是定量的。在第一个研究中,利用图分区算法来调度DSPS中的工作量。这减少了主机之间的通信负载,同时保持或增加了系统的吞吐量。第二项研究与DSPS的自动配置有关。我们使用称为贝叶斯优化的概率黑盒优化策略来通过配置提高DSPS的吞吐量性能。在第三项研究中,我们调查了提高DSPS效率的价值。这是通过构建基于DSPS的实体排名系统并评估及时数据处理对所生成排名的质量的影响来完成的。

著录项

  • 作者

    Fischer, Lorenz;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号